
and which features should be represented by different

segment types.

Applications have a �start of day� problem because

until they know the capabilities of some factories they

still can not do anything useful. This problem is currently

resolved by providing service location facilities in the

Medusa C++ libraries which can register capabilities and

query a capability database using mechanisms outside

Medusa. Ideally this would not be necessary and Medusa

will not be truly self contained until access to this

database is at least available via a module.

Currently there are polymorphic file source and file

sink modules which allow applications to record and play

back any stream of messages. This is adequate, but it

does not give full access to the facilities of a file system

solely from the Medusa world. A better model would be

to present files and directories as modules and factories

respectively.

Although there are currently no facilities for multi-cast

in our ATM network, the Medusa software architecture

must be able to use multi-cast when it does become

available. The simplest way of representing a multi-cast

network connection would be to introduce a new kind of

de-multiplexer module which was also a �connection

buffer�. This might in turn be hidden behind a layer of

proxy modules so that application writers would not need

to concern themselves with the details.

7. Conclusions

There are two central ideas in the Medusa software

architecture:

· Medusa connections are very simple, so that it is easy

to build large, understandable groups of modules. By

default reliable unbuffered connections are used, even

across the network. Where required, buffered or

unreliable network connections are specified using

special �connection buffer� modules.

· Security is based on capabilities, with proxy modules

used as revocable tokens which give partial and

temporary access to sensitive facilities.

These ideas were arrived at after much

experimentation. Our aim has been to provide an

environment within which new applications can be

prototyped very rapidly and new hardware can be

integrated into real applications with a minimum of fuss.

It is satisfying that this approach has worked well for

both creating and running applications over networks in

our local area. We must see how far we can go before

introducing the complexities needed for a fully

distributed system that scales to networks outside our

domain.

References

[1] J. Adam, H. Houth & D. Tennenhouse, �Experience with

the VuNet: A Network Architecture for a Distributed

Multimedia System,� 18th conf. on Local Computer

Networks, September 1993.

[2] G. Blair, A. Campbell, G. Coulson, F. Garcia, D.

Hutchinson, A. Scott & D. Shepard, �A Network Interface

Unit to Support Continuous Media,� IEEE Journal on

Selected Areas in Communications, February 1993.

[3] G. Finn, �An Integration of Network Communication with

Workstation Architecture�, ACM SIGCOMM Computer

Communication Review, October 1991.

[4] M. Hayter & D. McAuley, �The Desk Area Network,�

ACM Operating Syst. Rev., October 1991.

[5] M. Hayter, �A Workstation Architecture to Support

Multimedia,� PhD Thesis, Cambridge University Computer

Laboratory, Technical Report 319, January 1994.

[6] A. Hopper, �Pandora � an experimental system for

multimedia applications,� ACM Operating Syst. Rev., April

1990.

[7] A. Hopper, �Digital Video on Computer Workstations,�

Proc. Eurographics, 1992.

[8] A. Jones, & A. Hopper., �Handling Audio and Video

Streams in a Distributed Environment,� 14th ACM symp.

Operating Systems Principles, December 1993.

[9] I. Leslie , D. McAuley & D. Tennenhouse, �ATM

Everywhere?,� IEEE Network, March 1993.

created in the same process, on the same hardware as the

modules they protect. Messages between modules in the

same process are very cheap.

Proxy

Proxy

DisplayCapture

Application module

Proxy

Proxy

command-reply

data

Destroying any link in this chain of proxies would

have the effect of shutting down all data connections

dependent on it, giving the ability to revoke the

capabilities of modules handed out to less trusted

applications.

5. The system in use

The current implementation of the Medusa system

runs on UNIX, Windows NT and ATMOS using C++.

Modules are implemented as C++ classes. The behaviour

common to all modules is handled by a base class and

there are several subclasses which specialise this

behaviour and cover nearly all the cases that are

necessary when writing a new Medusa module. Given a

function written in C or C++ it need only take a few

minutes to provide that function as part of a publicly

available module.

There is a library containing the code for many

standard modules which can be incorporated directly in

new Medusa programs for efficiency. These modules

provide buffering, video format conversion, simple file

I/O, image display and other functions. Modules are also

available to handle multiplexing and de-multiplexing of

multiple streams, time-stamping and re-synchronising.

Using an extended version of the tcl/tk X toolkit, a

number of graphical browsing and debugging tools have

been constructed. Tcl is a scripting language for

embedding in applications and tk uses this embedded

language to control an X toolkit, making the construction

of X windows applications very straightforward. A

Medusa server has been constructed which is also a tk

interpreter, extended with primitives to create, connect

and control Medusa modules. The graphical tools written

using this interpreter have greatly facilitated the re-use of

modules and vindicated our decisions about the

architecture.

All the �direct peripheral� ATM hardware mentioned

in this paper exists now, linked into a working system by

the Medusa software described in this paper. The �ATM

Audio Brick� has CD quality quadraphonic input and

output with a DSP for filtering. The �ATM Video Brick�

can capture video simultaneously at six different

resolutions from either its own camera or from an

external programme source. These components have

been built into a pilot �multi-view video-phone� which

has four cameras and quadraphonic sound. The cameras

are used for overall views of a room, head-and-shoulder

shots and as rostrum cameras. Picture size and so on are

selected by the recipient, not the sender, so the recipient

can look at that part of a scene which is of most interest.

Using the �ATM Storage Brick�, a multimedia RAID file

store, it is possible to record and play back �multi-view

video mail� in which all of the streams are presented

simultaneously, again so that the recipient can decide

what to concentrate on.

A good example of the ease with which unusual test

programs can be prototyped is the �hand tracking

quadraphonic pan control�. This program takes the

output of an ATM camera and tracks a bright moving

area in the picture. To provide feedback this video stream

is displayed on a workstation screen and overlaid with

cross hairs to show the deduced hand position. The

output of the hand tracker also controls the position of

the sound image of a quadraphonic hi-fi system driven by

an ATM audio output device. The result is a program that

allows you to position a sound image by waving your

hands around.

We believe that the ATM devices we have available,

from infra-red remote control receivers to auto-

stereoscopic displays, coupled with the flexibility of the

Medusa software architecture give us a tremendous

potential for experimentation.

6. Future work

At present there is one generic audio segment and one

generic video segment. It is likely that these will change

and it will also be necessary to design segments which

handle various forms of compressed audio and video. The

problem here is to decide which features should be

represented by parameters within a single segment type

the corresponding value, but if the command fails none

of the attributes are changed.

· The watch attributes command is used to monitor

changes to the attributes of another module without

polling. Its arguments are text segments containing

attribute names, and it returns the same information as

a get attributes command. However, whenever any of

the specified attributes subsequently changes, an event

message is sent on the reply connection with the new

value of the attributes that have changed. If several

watched attributes change at once, the watcher is

notified of them all at once in the same event message.

· The unwatch attributes command is used to stop

monitoring changes to attributes. Its arguments are

text segments containing the names of the attributes to

stop watching.

All commands generate a matching reply message on

the corresponding reply connection. This indicates

success or failure in its first segment and further

segments in the message will contain results or error

information as appropriate.

4.5. Factories and proxies

Factory modules are important in the Medusa system

because they provide the mechanism for creating new

modules. They accept the Create Module command and

will attempt to create a module matching the parameters

for that command. Factories also have a supervisory role

and are often used to expose some physical property of a

piece of hardware which will affect all its users. For

instance a video camera factory will produce video

camera modules each delivering a stream of video images

and independently controllable as to picture size, frame-

rate and so on. However altering the focusing control on

the factory will change the picture for everyone. Factories

are too powerful to be exposed to the outside world

without some protection and this is where proxy modules

come in.

The concept of proxies is key to the security of the

Medusa system. Capabilities are the foundation upon

which security is built, but proxies are the mechanism by

which access is restricted. Anyone can obtain access to a

module at any time if they know the capability of the

module. In the case of a long-lived module such as a

factory, this may not be desirable. Instead, a proxy

module is created which simply passes all commands it

receives to the factory and forwards all replies from the

factory. This allows the user of the proxy full access to

the factory while the proxy exists, but allows a session

manager to terminate access simply by deleting the

proxy.

Two crucial elements in the Medusa system make

proxies possible:

· A proxy module can forward connection requests to

the module it is protecting.

· A proxy module can monitor changes in the protected

module's attributes and reflect them in changes to its

own attributes.

Taken together these facilities mean that a module can

be written which stands in the command-reply

connections between two modules:

Proxy module

Module A

replycommand

Module B

replycommand

As far as module A is concerned, the proxy module is

indistinguishable from module B. This fact is used to

protect module B, because the proxy can be used as a

revocable token giving temporary access to B. Destroy

the proxy and A can no longer use B, since it doesn't

know B's capability.

A proxy module can be used to protect module B even

further, by restricting the operations that module A is

allowed to perform. For example the proxy module might

make it look as though the attributes of module B were

read-only.

In a realistic system there will be several layers of

proxies between an application and the bottom level

modules which actually implement the multimedia

functionality of the capture and display devices.

However, because of the forwarding of connection

requests the proxy modules can �hand off� requests for

data connections down the stack of proxies to the

modules which do the real work. Thus data connections

are made efficiently, going directly between the real

modules without traversing the proxy stacks, even though

the commands controlling the capture and display

modules are filtered through these layers of protecting

proxies. We get efficient data transport while maintaining

the protection of the restrictive proxies.

It might be thought that commands traversing these

stacks of proxies would be exorbitantly expensive. This is

need not be the case, since for efficiency proxies can be

connected to is in the same process on the same machine

or it is on a far distant machine across the network.

A call-back is used to notify a module when another

module attempts to make a connection to it. The call-

back tells the module the port name and the direction of

the requested connection, but not the capability of the

other module. The module must then decide whether to

accept the connection request, to reject it or to forward it

to another module. Accepting or rejecting are fairly self-

explanatory result in the connection request either

succeeding or failing at that point.

When a module forwards a connection request it

passes it back to the Medusa library in its own process

and nominates a substitute port and capability for this end

of the connection. An attempt will then be made to

connect to that substitute module instead. In its turn, it

could accept, reject or forward the connection. There is

no way for a module to determine whether a connection

was made directly to it or via a convoluted chain of

forwarding. It is the forwarding mechanism which makes

proxy modules possible, as described in a later section.

It is important to note the difference between the

connection requests described in this section and

commands described in the next section. A connection

request is a library call which a module uses to ask the

Medusa library in its process to set up a connection,

possibly entering into negotiations with other Medusa

processes in order to do this. A command is a special

kind of message which is sent by one module to another

over a pre-existing connection in order to ask the module

at the far end of the connection to perform some action

on behalf of the first module.

4.4. Modules and commands

Command connections always appear in conjunction

with associated reply connections in the reverse direction,

since individual connections are uni-directional.

Another module

Application module

command connection reply connection

The task of controlling remote modules is simplified

by having a small, fixed set of commands that can be sent

to a module. Commands are messages that begin with a

command segment and the following segments in the

command message form the arguments of the command.

All modules accept the same small fixed set of

commands.

Every module also has a set of attributes that can be

used to control the behaviour of the module and to reflect

its state. Each attribute has a textual name and a value

which is a segment. Controlling modules is like

controlling a hi-fi by moving the knobs and buttons on its

front-panel. It is something one might do as the music

was playing, unlike re-connecting the components of the

system, which one would do more rarely. Some attributes

can be set only at the time a module is created, some are

read-only and some can be changed at any time. In order

to avoid inconsistencies, any number of attributes can be

changed in one go, and the whole set will either succeed

or fail atomically. For example a video source can insist

that its width and height are always equal and it can reject

changes that break this rule.

Here is a complete list of the commands accepted by

every module:

· The create module command is used to ask a factory

module to create a new module. Its arguments are a

text segment specifying the kind of module to make,

followed by segments specifying initial values for the

attributes of the new module. If the command

succeeds it returns the capability of the newly created

module.

· The delete module command is used to ask a module

to delete itself, or to ask a factory module to delete one

of the modules it created. In this second case a

capability must be supplied to specify which module is

to be deleted.

· The connect command is used to ask the module to

make a connection to another module. This command

takes four arguments: the name of a new port on the

module executing the command, the capability of

another module, the name of a new port on that

module and a direction. If the command succeeds,

then when this new connection is subsequently broken

an event message will be sent on the reply connection

to inform the application.

· The disconnect command is used to ask a module to

disconnect one of its ports. It takes the name of that

port as its argument.

· The get attributes command is used to read the values

of a module's attributes. Its arguments are text

segments containing attribute names whose values are

to be returned.

· The set attributes command is used to change the

values of a module's attributes. Its arguments are pairs

of text segments and value segments. If the command

succeeds, each of the named attributes is changed to

· Connections are reliable. Once a message is sent over

a connection then it will either arrive safely at the

other end or the connection will be broken. In some

circumstances the underlying network connection will

be irrecoverably destroyed (the so called "mad axe-

man problem") and in those circumstances the Medusa

connection over that network will of course be

destroyed too.

Although reliability is something which in practice

must be added to a network connection to make it useful,

in the Medusa architecture all network connections are

made reliable by default and if a network connection with

different properties is required this is represented by a

�connection buffer� module. By choosing an appropriate

�connection buffer� an application writer specifies which

quality of service or which of a number of protocols

should be used on the underlying network connection.

From the point of view of application writers the Medusa

convention is easily understood: network connections.

with the simplest representation are reliable and simple

to reason about; network connections with more complex

representation may be unreliable and are more difficult to

reason about.

For example, a source module could be connected to a

sink module in a variety of ways:

Module BModule A

The first way is just to connect the source to the sink

in the most straightforward fashion. This gives a reliable,

synchronous connection between the two modules.

BufferModule A Module B

A second way of connecting them is to select a module

from the various system-provided buffering modules and

to connect an instance of that kind of module in-between

the source and the sink. Depending on the precise type of

module that is selected the connection between the

source and the sink may now be buffered, it may discard

data so as to reduce latency, it may be optimised for a

specific kind of data and so on. The properties of this

new type of connection are reflected in the attributes of

the buffer module, which may be inspected and

controlled in the same way as for any other module.

Most modules are quite simple-minded about demand.

Pure source modules fulfil demand as soon as they can.

Pure sink modules issue demand when they are ready for

some more data. Pipeline modules, such as format

converters and compressors, issue demand when they are

themselves demanded of. Then they process the resulting

data, pass that on down the pipeline and wait for further

demand. Of course a pipeline composed of only this type

of module runs completely synchronously, with demand

going all the way from the ultimate sink to the ultimate

source, followed by a data message retracing this path

back to the sink again.

Synchronous working is simple and efficient when

modules reside on a single processor, but a pipeline

which must deliver real-time performance while running

between many machines on a network may need to use

�connection buffer� modules to optimise its performance.

However it is worth mentioning in passing that, to our

surprise, we have found the default reliable connections

to be quite satisfactory for 44kHz audio links across our

ATM network.

An alternative approach to the implementation of

connections would have been to say that they were

another kind of active object, different from modules, but

with similar facilities for controlling and monitoring their

performance. We decided that this would bring more

problems than benefits since new operations for dealing

with connections would have to be defined and

implemented. Using our approach the pre-existing

operations used to control ordinary modules could be

reused and nothing new needed to be introduced into the

architecture. For completeness the alternative approach is

also being explored at Olivetti Research as part of the

Mobile Distributed Architecture project mentioned

earlier.

4.3. Making connections

A module requires two pieces of information in order

to make a connection to another module. It needs to know

the name of a port on the other module and it needs to

know the capability which uniquely names that module.

A capability contains network addressing information

which unambiguously identifies a process on some

machine on the network. This process is the one which

implements the functionality of the module

corresponding to the capability. So as to make

capabilities unforgeable, in addition to the network

addressing information they also contain a large random

number generated when the module is created.

When a module knows the port name and capability it

wishes to connect to, it makes a library call to the

Medusa library in its own process. The module must also

nominate a local port on itself which will be used for one

endpoint of the connection and specify whether it is for

input or output. This same mechanism is used to request

connection set-up regardless of whether the module to be

and plentiful. On an ATM network this is certainly the

case, though on other networks it may be less true.

For pragmatic reasons we decided that the system

should avoid implementing functionality which could be

more easily provided by an application level toolkit. For

example, applications have a "start of day" problem

because they are not initially connected to other modules

and they don't know the capabilities of any other

modules. This problem is resolved by providing service

location facilities in a toolkit layer. Another project at

Olivetti Research called the Mobile Distributed

Architecture is exploring service location issues,

especially in an environment containing small portable

computers. We hope to integrate our work with this at

some future time.

4. The architecture

In this section we describe the software architecture in

more detail. Starting with the representation of data as

segments we then go on to describe connections,

commands and proxy modules.

4.1. Segments and messages

A segment is the atomic unit of data in the Medusa

software architecture. The format of segments is

principally a network format, specifying the layout of

data to be transferred between machines. In our current

implementation of Medusa this network format is

transcribed directly to and from buffers of contiguous

memory which are used as the internal representation of

segments. This choice of internal format was made for

reasons of efficiency and convenience in our

implementation language, C++, but in other languages

the internal representation could be quite different. The

only thing that must stay the same between

implementations is the network format. Polymorphic

modules, which are happy to deal with messages

containing any type of segment, can treat all the segments

they see as �raw data� without bothering about their types

at all.

There are the following types of segments in Medusa:

· Text segments contain a null-terminated string of

ASCII characters.

· Integer segments contain an array of signed integers.

· Capability segments contain the capability for a

module.

· Mark segments contain no data. They are used as

delimiters in messages.

· Time segments contain a time value.

·· Audio segments contain a byte string which encodes

the audio data and also parameters describing the

sample rate, encoding scheme and so on.

·· Video segments contain a byte string which encodes

the video data and also parameters describing the

width, height, pixel format and so on.

· Command segments contain an integer identifying

one of the small number of commands in the system.

These are used to identify command messages. Further

details are given in section 4.4.

· Reply segments contain a status code for the result of

a command. These are used to identify reply messages.

· Event segments contain a status code. They are used

to identify event messages.

In the case of command, reply and event messages the

command, reply or event segment must be the first

segment in the message.

4.2. Connections

Connections are very simple and any sophistication

such as buffering, unreliability or asynchronicity is

represented by a module. Connections join a port on one

module to another port, usually on a different module.

Once a connection has been made to a particular port, no

other connection may be made to that port until the first

connection has been removed. It is important to note that

connections are made between two ports as a single

operation: there is never any time at which only one port

is attached to a connection. A connection is the

attachment of one port to another. The most important

feature of a connection is that it is location transparent.

The communicating modules do not need to know

whether they are on the same machine or separated by a

network. Connections have the following properties:

· Connections are not typed. All connections are

equivalent and all connections can carry any kind of

data that can be represented in a message.

· Connections are synchronous and demand driven.

Data must be demanded by the sink before the source

can send a message to the sink. The sink does not

demand again until this outstanding demand has been

fulfilled. When the source is ready it sends a message

to the sink and waits for the next demand.

Implementations of this scheme are simple and can be

made to run over any network. This is an important

consideration where rapid prototyping is an issue.

· Connections are one-way: data flows from the source

module to the sink module. Ports are either input or

output and there must be one of each for a connection

to be made.

data itself. A peer-to-peer architecture allows more

flexibility when deciding how to structure the flow of

data in individual cases.

Here is a glossary of the principal components of the

Medusa software architecture:

Application
module

Attributes

ModuleModule

Input
port

Output
port

Connections

Message

a
b
x
go

· Modules are the active objects in the Medusa software

architecture. They are the sources of data, sinks of

data and processing elements within the system. All

active objects within the Medusa world are modules,

even applications.

· Attributes are variables local to each module, through

which they expose some of their internal state to other

modules. Other modules may inspect these attributes,

modify them, and may ask to be notified when they

change.

· Capabilities are unique global names for modules.

Capabilities contain network addressing information

and large random numbers. The addressing

information allows connections to be made to their

corresponding modules, and the large random numbers

make them unforgeable.

· Segments are the atomic units of data representation.

Segments are typed and may contain strings, integers,

pieces of audio or video, time stamps, commands and

so on. The values of attributes are segments.

· Messages are the units of data transfer between

modules. A message is a sequence of one or more

segments.

· Connections allow one module to communicate with

another. Connections are not typed, but the messages

flowing through them are composed of typed

segments. Connections are unidirectional and data

transfer across connections is demand driven.

· Ports are the endpoints of connections. Modules have

collections of named ports which they may create and

delete dynamically. Ports are either input or output,

but other than this restriction on direction there is no

constraint on the kind of data flowing through a port.

· Commands are messages whose first segment is a

command segment indicating the operation to be

performed. The set of commands is small and fixed

and these commands are understood by all modules.

· Factories are modules that can create other modules

when asked to by a command.

· Buffers are modules interposed in the data connection

between two modules which provide a more

sophisticated connection semantics than the simple

demand-driven semantics that a direct connection

would impose. Most buffers are polymorphic, that is

they are happy to buffer messages containing any type

of segment.

· Proxies are modules interposed as a �fire-wall� in the

command-reply connections between an untrusted

module and a sensitive module. The proxy is

indistinguishable from the sensitive module except in

the case of certain forbidden operations, which will

fail. If the proxy is destroyed, the untrusted module

has no further control over the sensitive module.

We decided that connections between modules should

be reliable, so that the same mechanism could be used to

transmit both commands and multimedia data. Although

commands and data always travel over different

connections in practice, we felt that this approach was

justified for the pragmatic reason that it was more

straightforward to implement one mechanism than two.

When network connections which expose the workings of

unreliable networks are required, they can be specified

using �connection buffer� modules, described in a later

section. For �off-line� working reliability is vital for both

data and commands. Consider, for example, an image

compositor in a video editing suite. Its real-time

performance is secondary: the main thing is that it

combines images reliably. Even in live applications, such

as video-phones, reliable connections are desirable when

certain kinds of compression such as MPEG are in use.

Wherever possible different media are handled in a

unified way. For example switching, synchronisation and

storage do not in general require precise knowledge of

the media type, so polymorphic modules are provided

which perform these common functions and the modules

can be re-used in a wide variety of rôles.

It was always intended that Medusa would run in an

ATM environment and this led to a number of

assumptions about the underlying network. In particular

we assume that a global addressing scheme exists, so

anything on the network can connect to anything else. We

also assume that network connections are simple, cheap

component in a new application. Indeed, from the point

of view of an application designer it is not necessary to

draw any fixed line between hardware and software

components. A component can be prototyped in software

and then replaced by hardware, the only difference being

speed of operation. Alternatively, a hardware component

could be replaced by software to reduce the cost of a

system or to take advantage of a fast new general purpose

processor.

2. Design goals

Considering the design of Pandora [6,8], an earlier

networked multimedia system built at ORL, we

highlighted certain goals whose attainment would be

necessary for the success of a more open system. The

Pandora system consists of several UNIX workstations

each with an attached peripheral which handles all ATM

network traffic and all audio and video for the

workstation. The video images are inserted into the

workstation's display by this peripheral using analogue

switching techniques. We gained valuable experience

from building and using the Pandora system. However,

the Pandora software architecture is not suitable as a

foundation for a more open system.

In the Pandora architecture it is easy for an application

to set up multimedia connections from one place to

another, but hard for an application to manipulate the

multimedia data itself. Applications must also know too

much about whether devices are attached directly to the

network or to a local bus. The Pandora software

architecture is good for interactive applications where

latency of multimedia data is the main concern, but very

poor for off-line working where reliability is more

important. Because the Pandora hardware is basically a

single box attached to the network, it is difficult to add to

the system incrementally and heterogeneously. Perhaps

the most fundamental problem with the Pandora

architecture is that there is no access control, and in fact

no security mechanism at all. With all this in mind we

decided on the following goals for the Medusa software

architecture:

· Medusa must be able to integrate data from the

heterogeneous hardware being developed at Olivetti

Research. This means that the system has to be able to

run under UNIX, Windows NT and ATMOS (our in-

house micro-kernel for embedded systems). This in

turn leads to a requirement for a simple and

lightweight implementation.

· Medusa must provide security mechanisms so that

users will have confidence in the multimedia

applications. In the same way that telephones are seen

as assets, not threats to privacy, we must ensure that

our networked microphones and cameras are assets.

· Medusa must support the processing of multimedia

data in software. This allows applications to

manipulate multimedia data as well as controlling its

transfer. This also means that it is easy to move

between hardware and software implementations of a

particular functionality.

· Medusa must facilitate the re-use of hardware and

software components so that it is easy to build

supporting structures for new applications. If these

structures are hard to build, new ideas can be

discarded untried because it is too much effort to test

them out.

· Medusa must be able to support applications involving

agents as well as applications such as video-phones

which provide direct communication between people.

Reliability of the data connections appears to be the

most important thing where agents are involved, in

contrast to direct human interactions where low

latency is the key. However, both classes of

application have a great deal of functionality in

common and re-use of components between them

must be easy.

· Medusa must be able to handle multiple streams

effectively. We anticipate that dozens of streams will

go in and out of individual offices, and eventually the

whole Medusa system at Olivetti Research will be

called on to handle thousands of streams

simultaneously.

3. Overview

The goals of a lightweight implementation and rapid

prototyping immediately led to the idea of the active

objects which we call modules. The Medusa system

provides a large number of simple modules which may be

combined to produce the structures of control and data

flow required by individual applications. Modules will

usually be implemented as threads or co-routines within

server processes on the different machines on a network.

For example the modules representing and controlling an

ATM camera are implemented on the ATMOS embedded

processor attached to that camera.

Medusa has a peer-to-peer architecture rather than the

strict hierarchy of a client-server architecture with call-

backs. This is because one application may wish to take a

�hands on� approach and inspect or modify data as it

flows from a source to a sink, while another application

may wish to take a �hands off� approach and simply

connect a source to a sink without ever touching the raw

The Medusa Applications Environment

Stuart Wray�, Tim Glauert� & Andy Hopper��

�Olivetti Research Limited,

24a Trumpington Street,

Cambridge CB2 1QA, England

�University of Cambridge Computer Laboratory,

New Museums Site, Pembroke Street,

Cambridge CB2 3QG, England

Abstract

Medusa is a peer to peer architecture for controlling

networked multimedia devices. This paper describes the

software model presented to the applications

programmer. Active objects called modules are used to

represent cameras, displays, format converters and so

on. Data can flow from module to module on connections

between them. We introduce two key ideas: firstly,

connections between modules are simple, reliable and

unbuffered. More complex connections are represented

by special intermediate modules. Secondly, security is

provided by naming modules with unforgeable

capabilities then using hierarchies of proxy modules to

restrict access. Keywords: multimedia, distributed

systems, programming paradigms, ATM networks

1. Introduction

The Medusa project at Olivetti Research aims to

provide a networked multimedia environment in which

very many streams, perhaps thousands, are active

simultaneously.

display tile

workstation/PC

speakermicrophone

camera

storage

The wider world

ATM
switch
fabric

We envisage that most of the traffic in our system will

not involve direct human interactions but will instead

involve agents whose purpose is to examine video and

audio on behalf of their human clients. For example there

will be agents for face recognition, for interpreting

gestures and spoken commands, and so on. These agents

will often have real-time requirements which differ from

those of direct human interaction, and it is important that

all these different requirements are supported equally

well by our hardware and software.

The hardware upon which the Medusa project is based

is a collection of �ATM direct peripherals�, including

cameras, microphones, loudspeakers and multimedia file

servers, as well as ATM networked workstations. Each of

the direct peripherals is a small computer built around an

ARM processor which is connected to an input or output

device and to the ATM network [7,9]. Each of these

computers runs an in-house micro-kernel called ATMOS

which was designed specifically for such networked

embedded real-time systems. In more traditional

multimedia systems the input-output devices would be

attached to a workstation bus and the workstation would

be connected to a network. In our approach, the input and

output devices are separate components, each

independently connected to the network.

A similar but slightly less radical approach has been

taken by a group which has built clusters of tightly

coupled input and output devices around standard

workstations [2]. Other groups [1,4,5] have been even

more radical than us, dividing the workstation itself into

separate components, with CPUs, caches and memories

all directly connected to the ATM network. We have

stopped before this point, preferring instead to

concentrate on providing a wide variety of input and

output devices and the software infrastructure to rapidly

prototype applications using them.

With all the ATM direct peripherals under the control

of the Medusa software it is easy to replace an old

component with a new component or to re-use an old

