
CONSTRUCTIVE METHODS FOR A NEW CLASSIFIER BASED

ON A RADIAL-BASIS-FUNCTION NEURAL NETWORK

ACCELERATED BY A TREE

Philippe GENTRIC, Heini C.A.M. WITHAGEN

Laboratoires d'Electronique Philips

22, av. Descartes

94453 LIMEIL-BREVANNES

FRANCE

Abstract

We present a new constructive algorithm for building Radial-Basis-Function (RBF) network classi�ers and

a tree based associated algorithm for fast processing of the network. This method, named Constructive Tree

Radial-Basis-Function (CTRBF), allows to build and train a RBF network in one pass over the training data
set. The training can be in supervised or unsupervised mode. Furthermore, the algorithm is not restricted to

�xed input size problems. Several construction and pruning strategies are discussed. We tested and compared

this algorithm with classical RBF and multilayer perceptrons on a real world problem: on-line handwritten
character recognition. While instantaneous incremental learning is the major property of the architecture,

the tree associated to the RBF network gives impressive speed improvement with minimal performance losses.

Speed-up factors of 20 over classical RBF have been obtained.

1 Introduction

Classi�cation is a very general task that may be used in a great number of �elds. The desired properties for a
classi�er are: high generalization rate, high processing speed, low memory requirement and the ability to give a
likelihood measurement of some sort. Another important requirement is a short training time. Also, some tasks
require an additional capability: very fast incremental learning (for example, on-line user adaptation in handwriting
recognition modules for small computer).

Many of the most popular neural algorithms are only able to take into account a new information through a full
re-training. If we take for example a multilayer perceptron trained by error back-propagation; even with special
acceleration techniques [1] such a learning would require several passes over the training set which is simply not
feasible if one is to stick to the requirements of real-world "cheap" applications.

CTRBF is a method that allows to build very rapidly a structure made of a RBF network and a tree that will be
much faster than a classical RBF in resolution mode with minimal performance loss. The network is able to provide
a very reliable likelihood estimate and can be easily adapted to changes (incremental learning). Furthermore, all
the information stored in the network and the tree can be very precisely accounted for (we know exactly and
declaratively the purpose of every component of the net) and consequently, the network and/or the tree can be
pruned very e�ciently when a smaller system is required, with control over the subsequent loss of performance.

In this paper, we will describe the tree and network structure as well as the algorithms needed to build and
optimize this structure. Finally we will present a real-world application: on-line handwritten character recognition.

2 Radial-Basis-Function network

Radial-Basis-Function Networks are known to be capable of universal approximation [2] and the output of a RBF
network can be related to Bayesian properties.

A RBF net has 2 layers. The hidden layer is (usually) fully connected to the input units X = (Xi) of size
Ninput. A hidden unit j has a input vector of synaptic weights Winj = (Win

j

i
) and is evaluated using a metric

and a nonlinear function, here for example the Euclidean metric:

OUTj = f(jjWinj �Xjj) = f(

Ninput�1X

i=0

(Xi �Win
j

i
)2=�j)

1

where f(x) is a function such as exp(-x) or 1/(x+a) and �j is an adjustable parameter. As this process has a
radial symmetry of center Winj , the output of a hidden unit j will increase when the input pattern vector X comes
"closer" (according to the metric) to the synaptic weights vector Winj .

The next layer gathers the activities of the hidden units with the purpose of taking a decision on the class of
the input prototype.

For classi�cation tasks with C classes, the output layer will have C output units. The classi�cation result
is obtained from this layer on a "winner-take-all" (WTA) basis: the class of the input pattern will be given by
the most active output unit. This layer is usually made of linear units because the computation of a monotonic
non-linear function adds useless computations in a winner-take-all context and/or leads to useless confusions (loss
of information) in case of hard limiting function or limited precision outputs.

Assuming Nhidden hidden units, the activity of output unit k is:

OUTk =

Nhidden�1X

j=0

(Woutk
j
� f(jjWinj �Xjj))

and the resulting class w j OUTw = max(among k)(OUTk).
One of the most interesting properties of RBF networks is that they provide intrinsically a very reliable rejection

of "completely unknown" patterns. Indeed, in a classical multilayer perceptron there is no guaranty that a prototype
very far from any previously presented data will not produce a positive output.

Note also that the synaptic vector Winj stores a location in the problem space, in other words, it stores an
input pattern. It is then straightforward to imagine how (incremental) learning can be performed by creating a
new hidden unit whose input synaptic weight vector will store the new training pattern. The synaptic weight from
this new hidden unit to the output unit corresponding to the class of the new pattern is set to a positive value
(say 1). One way to build a RBF network for a given classi�cation problem is thus to create one hidden unit per
training prototype. In real-world problems though, the number of prototypes can get very large. For this reason we
developed CTRBF, a technique that allows to reduce the number of stored patterns accessed for each classi�cation.
Note that pruning techniques can also be used in order to reduce the number of hidden units (see below).

Most of the RBF literature [3] [4] is devoted to the use of optimization techniques in order to compute an
optimized set of synaptic weights in the RBF network. Our experience is that for real world problems these
methods demand a great amount of computations and in the end produce systems that do not perform much
better than CTRBF.

3 Tree RBF

The idea of associating a tree to a RBF network is based upon the simple remark that all of the hidden units of
the RBF network are not active at the same time. More precisely, only the hidden units storing a pattern that is
"close" to the input pattern are active.

Consequently, when a pattern is presented to the input, instead of computing the full network, we will search
which hidden units store patterns that are close to this input pattern. Then, just like a classical RBF, we will
evaluate these units and propagate their activity to the output. Of course, the aim is to �nd these active units
with as little distance computations as possible.

3.1 Tree structure

The tree structure used is binary and is illustrated in �gure 1. To each branch is associated a stored pattern and a
distance threshold named "radius" equivalent to �j. Each branch may lead to a son branch and a brother branch,
and this branch is then the father of both. If the son branch exists, its radius is smaller than its father radius and
the distance between a branch and any branch up the tree starting with the son of this branch is smaller than
the radius of this branch. If the brother branch exists, its radius is equal to the father radius (hence the name
"brother") and all branches up the tree starting with the brother are at a distance from the father greater than
the father radius. If a branch has no son then it is a "leaf" and each leaf points to one hidden unit of the RBF net.
If a branch has no brother then it is a terminal branch. The radius of the root branch should be bigger than the
biggest possible distance between two patterns.

3.2 Tree evaluation

When an input pattern is presented we start the evaluation of the tree at its root. Then we compute the distance
between the input pattern and the pattern stored by the current branch. If the distance is bigger than the branch
radius, we go to the brother, otherwise, we go to the son.

2

brother brother

sonsonson

R1 R1 R1

R0

R2 R2 R2 R2 R2 R2 R2 R2 R2

brothers brothersbrothers
leaves

root

R0

R2

son

R1

Figure 1: Tree structure: an example of very simple tree. On the right, a representation of what the corresponding

topology could be with 2 dimensional input data and a Euclidean metric

When the evaluation of the tree leads to a leaf, the corresponding hidden unit of the RBF network is evaluated.
When the evaluation of the tree leads to a terminal branch, the search is ended (see below for exception: extended
search).

In order to know how much acceleration the tree gives, we compute the speed-up factor � : the number of hidden
units divided by the average number of distance computations performed per prototype (tree + network distance
computations); hence we have � = 1 for a classical RBF network and � < 1 if the tree adds computations�50z
instead of preventing some.

3.2.1 Extending the search

We may extend the search in order to get a bigger number of selected hidden units. First, the tree may be seen
as a variable-K-NN: when a leaf is reached the test (brother or son ?) is not made: all leaves along the line from
brother to brother are evaluated. In other words, all hidden units storing prototype that are closer to the last
branch than this branch radius are evaluated. In the following CTRBF will refer to this "basic" extended search.

Also, the search may be extended in the following fashion: when a terminal branch is reached, instead of
ending the search we backtrack down the tree and at each branch we test the brother. Note that the tree is not
completely explored: only branches which store patterns that are closer to the input pattern than their radius are
then searched. We call this mode of extended search "backtracking".

Another way to extend the search is to force a bigger radius than the stored radius [5]. The factor by which
the radii are multiplied is called the external search factor.

Experimentally, the results show that extending the search using these methods is e�cient in terms of perfor-
mance while allowing to keep a good speed-up factor �.

3.2.2 Rejection

Rejection is provided in three di�erent ways. First, the tree search may end while no leaf was selected: this rejection
mode is typical of a pattern that is "very di�erent" from what was in the training data set. Secondly, the maximum
output unit (winner of the WTA) activity may be below a given threshold : this is a likelihood rejection. Thirdly,
the di�erence of activity between the winner and the second best is less than a second pre�xed threshold: this is
a confusion rejection.

4 Tree Construction algorithm

There are several ways to build the tree. Whether the class of a pattern is used or not, the construction is supervised
or unsupervised.

3

4.1 Unsupervised learning by dichotomy

This method has the advantage of making few hypothesis on the structure of the data. We set the following
constraints: the maximum number of brothers up the tree for any branch MAXbrother is �xed (this parameter
is very important, it will determine the speed-up factor �). The lowest branch radius (root radius) is �xed (the
biggest possible distance between two prototypes is a good estimation) . The highest branch radius (leaf radius) is
�xed (this parameter is very important, it is equivalent to the resolution of the model), it may be set by trial and
error or by prior knowledge on the problem [6]. Then, build a RBF net by storing all the patterns in the training
data set. Make a tree with only one branch (the root) and as many leaves as there are hidden units in the RBF
net. Start at the tree root and for all the branches do the following:

1. Count the number of brothers up to the top (go from brother to brother until a terminal branch is reached).
This measure of the size of the branch is a worst case estimation of the amount of computation that would
be performed during tree search if this branch was reached.

2. If this number is less than MAXbrother continue the search. When the whole tree has been tested, stop.

3. If this number is greater than MAXbrother optimize this branch (or create an intermediate tree level) as
follows: For a branch B0, we need to keep track of 2 locations in the tree: Bi designates the son of B0 and
then the line of brothers up to the terminal. Bk designates the line of brothers created up to the terminal.
Set Bi as the son of B0:

(a) Create a new son branch for B0 (or a new brother along the line of brothers starting at the son of B0)
named Bk of radius Rk. Rk must be intermediate between the radius of Bi and the radius of B0(for
example take the average Rk = (R0 +Ri)=2). Associate to this branch the prototype of Bi .

(b) Find all the Bi which store prototypes closer to the prototype of Bk than Rk. Retrieve them from the
line of brother Bi and insert them in the line of brother of the son of Bk. Go to 1.

4.2 Supervised learning by distribution

We start with the following constraints: all the radius hierarchy is �xed so that the lowest branch radius (root
radius) is �xed, the highest branch radius (leaf radius) is �xed, the number and value of intermediate radius levels
are �xed. Then proceed as follows:

1. Get at random a prototype from the training data set, until the set is empty. Use it as input pattern for an
evaluation.

2. If the classi�cation decision is correct, discard the pattern.

3. Otherwise, create a RBF hidden unit and a leaf storing this pattern with the leaf radius.

4. Find through the tree the �rst branch which stores a prototype that is closer to this new pattern than the its
radius (this search was already done during evaluation) assign the new branch (or leaf) as a son (or a brother
up the line of brothers starting with the son).

5. If no branch can be found, create (recursively up the tree) a branch(s) (leaf) storing this new pattern with
radius(ii) corresponding to the son of the last found branch (root branch in the worst case).

Note that this tree and network construction mode is the mode used in case of incremental learning. Also, this
is a supervised algorithm but removing the test in step 2 provides an unsupervised strategy.

4.3 Tree pruning

Branch pruning may be needed because, during construction, branches that have no brother but only a son may
be created: these branch are useless and should be pruned (the connection from their father to their son is made
directly). Also, after a network pruning (see below), some branch may loose all their upper branches, of course
they should also be pruned.

4.4 Network pruning versus e�cient construction

The most simple pruning methods are based upon the "leave-one-out" strategy: if the global system performs just
as well without a given unit then this unit is not needed and must be pruned. However, this method leads to N2

complexity (if N is the training data set size) because every hidden unit must be evaluated every time a hidden
unit is tested for pruning. You may bene�t from a kinetic factor: the network gets smaller as the pruning proceeds,
thus less computation is needed. This is dual to the "e�cient construction" obtained by distribution (see above).

4

Another strategy is the self-leave-one-out strategy. When a hidden unit is tested for pruning, the temptation is
to perform the test with as few patterns as possible: ultimately, the unit is tested only with its own stored pattern.
With CTRBF one can choose to test one hidden unit using only the tree-designated closest patterns. If � is the
speed-up factor the overall complexity is then reduced to N2=�2.

The CTRBF architecture allows to choose any of these strategies, depending on the amount of data, time and
processing power available.

4.5 Metric and a priori information

Very often we have a priori information about the problem to be solved. The possibility to incorporate such
information into the classi�cation task is known to be fundamental for the �nal performance. For example, in
multi-layer perceptrons the a priori information can be built into the system using local connections, constrained
weights and back-propagation of special quantities depending on known properties in the data such as translation
invariance [7].

In RBF networks this kind of information can also be incorporated by changing the metric used (Euclidean
in the original RBF). For example an image metric may be computed allowing local translations. Or a dynamic
programming technique may be used to compute a metric between two character strings, which also allows to
compute a metric between patterns that are not described with the same amount of information (in case of
character strings, one can compare the word "wagon" and the word "wgon") etc..

5 Application to on-line handwritten character recognition

The handwritten characters considered have been acquired using an electronic paper interface, and pre-processed
into a pattern vector having 481 components. A detailed report on this application will be published elsewhere
[8]. Here we present two problems, the �rst problem is the "bars" problem. There are 4 kinds of bars: vertical,
horizontal, slanted to the left, slanted to the right. We used 544 prototypes for learning and 544 others for testing.
The second problem is a upper case character recognition problem. We used 3698 prototypes for learning and
3697 for testing. For both problems we compare the results obtained with various parameter values against the
performance of multi-layer perceptrons. For the "bars" problem, the results are summarized in table 1. For the
upper case characters problem, the results are summarized in table 3. One can see that the performances are still
good even for � as big as 20.

In table 2 we compare the rejection ability. Here we tested the systems learned with the "bars" data (4 output
classes) with the upper case letter test set: all the test patterns should be rejected. One can clearly see that the
CTRBF is far superior to the multi-layer perceptron.

The evaluation times of CTRBF and perceptrons are comparable. For a CTRBF network learning and evaluation
takes about the same time. On the contrary, the learning time of the perceptron is much bigger. For example the
learning time of the perceptron with 50 hidden units in the second problem is far superior to all the learning and
evaluation times of the tests on the CTRBF for the same problem (on a SPARC station, a few minutes against
several hours). Of course, the instantaneous incremental learning is not possible with a perceptron.

6 Conclusion

CTRBF has been software-implemented in a user-adaptable on-line handwritten character recognition and runs
at 3 characters per second on a 386 PC. CTRBF allows to explore constructive neural network techniques in
supervised and unsupervised mode. The tree structure provides a clustering of the training data. The fact that
all the information in the system can be accounted for, the intrinsic robust rejection capability, the short training
time and the instantaneous incremental learning coupled with a high processing speed are the assets of this new
architecture. Speed-up factors of 20 over a classical RBF can be obtained on a real world application. Furthermore,
the parameters of the constructive algorithm allow to tailor the system to the application requirements. Many
question are still to be answered, such as: how can we systematically build a metric taking into account a priori

information ? Is CTRBF suitable for e�cient hardware implementation ? Nevertheless, we already know that
CTRBF is a very versatile new architecture for pattern classi�cation.

References

[1] S. Makram-Ebeid, and al., A rationalized error backpropagation algorithm, Proc. INNS, Washington, DC,
June 18-22,(1989)

5

[2] J.Park, I.W. Sandberg, Universal Approximation Using Radial-Basis-Function Networks, Neural Computation

3,246-257 (1991)

[3] E.Hartmann, J.D.Keeler, Predicting the Future: Advantage of Semilocal Units, Neural Computation 3,566-578
(1991)

[4] J. Moody and C. Darken, Learning with localized receptive �elds, Proceedings of the 1988 Connectionist Models

Summer School, ed. D. Touretzky, Morgan Kaufmann Publishing, San Mateo, CA, pp. 133-143, (1988).

[5] A. Saha and J.D. Keeler, Algorithms for better representation and faster learning in radial basis function
networks, Neural Information Processing Systems, ed. D. Touretzky, Morgan Kaufmann, San Mateo, CA ,
482-489, (1990).

[6] M.T. Musavi and al. On the training of radial basis function classi�ers Neural Networks 5, 595-603 (1992).

[7] P. Simard, Y. Le Cun, J. Denker, B. Victorri, An e�cient algorithm for learning invariances in adaptive
classi�ers. To be published in IAPR.

[8] P. Gentric, On-line handwriting recognition for small computer. Submited to the Sixth International Confer-
ence on Handwriting and Drawing, Paris July 5-6-7, (1993).

network used branches hidden units error rate rejection rate �

CTRBF 149 544 1.1 % 9.2 % 33
idem + backtracking 149 544 2.0 % 1.5 % 10

idem + external search factor 1.2 149 544 0.9 % 1.1 % 6.2
idem + external search factor 2 149 544 1.1 % 0.6 % 2.7
idem + external search factor 10 149 544 1.5 % 0.6 % 0.9

normal RBF 1 544 1.5 % 0.6 % 1

1 layer perceptron (no hidden neurons) 0 1.1 % 1.1 %
2 layer perceptron (10 hidden neurons) 10 1.8 % 1.2 %

Table 1: Compared performances on a 4 classes problems: the bars. One can see that a speed-up factor from 5
to 10 does not a�ect the performance. Also the perceptrons do not perform much better although (especially the
two-layer perceptron) they are much slower to learn.

network used error rate rejection rate �

CTRBF + backtracking + external search factor 1.2 4.4 % 95.6 % 33
2 layer perceptron (10 hidden neurons) 45 % 55 %

Table 2: Compared performances on the 4 bars problems: rejection capability, this test was performed using upper-
case data (3697 prototypes): on this problem the error rate cannot go much below 6 % because there are 240 'I'
among which many that may be confused with a vertical bar. This is a clear con�rmation of the superiority of
classi�ers based on distance-to-pattern over classi�ers based on distance-to-linear-separator

network used branches hidden units error rate rejection rate �

CTRBF 1099 3698 7.9 % 25.5 % 200
idem + backtracking 1099 3698 12.5 % 4.1 % 42

idem + external search factor 1.2 1099 3698 5.4 % 0.8 % 21
idem + external search factor 2 1099 3698 4.3 % 0.5 % 5
idem + external search factor 10 1099 3698 4.3 % 0.6 % 1

normal RBF 1 3698 4.3 % 0.6 % 1

1 layer perceptron (no hidden neurons) 0 10.4 % 12.3 %
2 layer perceptron (10 hidden neurons) 10 16 % 20 %
2 layer perceptron (50 hidden neurons) 50 7.8 % 8.6 %

Table 3: Compared performances on a 26 classes problems: the upper case letters. As the problem size and number
of classes grow the size of the totaly connected

6

