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Abstract

In the context of dynamic handwriting recognition, i.e. handwriting acquired from the

pen motion, we focus on the recognition of words written in the discrete mode i.e. characters

should not overlap. The word recognition is made of a character recognizer and a lexical

resource based on a Levenshtein-like distance. We demonstrate that the word recognition

rate can be greatly improved by enhancing the nature of the information provided by the

character recognition classi�er to the lexical processor. A Radial Basis Function (RBF)

classi�er is used to provide accurate substitution costs in the Levenshtein metric lexical search

scheme. We report experimental results that demonstrate a clear advantage of this method

over the traditional use of the classi�er confusion matrix for substitution cost estimation.

We conjecture that this is probably related to the highly multi-modal and ambiguous nature

of the handwritten character classi�cation problem.
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1 Introduction

In the context of dynamic handwriting recognition (i.e. handwriting acquired from the pen motion)

we focus on the recognition of words of a given lexicon. In such systems the word recognition is

built on a character recognizer assisted by a lexical resource. A segmentation module proposes

segmentation hypothesis consisting of a list of candidate characters. Each candidate character is

submitted to the character recognizer and the resulting string of recognition results is passed to

the lexical resource. Hypothesis may di�er because of the segmentation i.e. di�erent pieces of the

input signal are gathered in order to build characters, or because of the character recognition i.e

for each candidate character the recognizer provides a list of possible results. Here, the lexical

module is used to �nd the best hypothesis. It is not just a check that a given word belongs the

lexicon; the lexical module �nds the word of the lexicon that matches best the segmentation and

the character recognition. In order to do this we need a quantitative estimation of how "good" is

a segmentation and recognition result, this is done by using a Levenshtein metric [1]. This metric

has to be computed for every word in the lexicon except if heuristics are used to discard non-

pertinent words, for example the length of the word can be estimated and only words of neighboring

length are tested. As this is computationally expensive the implementation is accelerated using

a Dynamic Programming search [2]. The Levenshtein metric requires an estimation of the costs
of the three basic operators: substitution, deletion and insertion. This estimation is generally

based on statistical considerations. For example in Bozinovic and Srihari [3] a probabilistic �nite
state machine is used to model the segmentation errors (merging and splitting errors) and the
substitution errors ( recognition errors). In other words, the system is supposed to make errors
and these errors are modeled in order to compute probability of alternatives in terms of Bayes'
decision theory.

We focus here on the problem of computing substitution costs.
The most simple method for computing substitution cost consists in giving for each recognized

character a zero substitution cost for all known alternatives and an in�nite cost for all other
characters. This method has the advantage of being very simple to implement in software as
well as in hardware, leading to great execution speed. It is the base of most "spelling checker"

programs. We will show however that in handwriting recognition the performance is poor.
Another widely used method consists in estimating the substitution costs using the class error

probabilities -or classi�er confusion matrix- as in [3]. For a given character X the substitution
cost with another character Y is computed by counting how many times in the past the classi�er
gave the answer Y when a prototype labelled with the class X was presented.

We propose here a method based on computing the substitution costs using the class likelihood.

This method is not based on a compilation of the previous classi�er errors. Instead we use the
fact that a classi�er can be used not only for producing one class but for producing a ranked list

of classes. Providing that the classi�er has some basic properties that we will detail, this has the

advantage that the alternatives are more relevant of the input character pattern, which gives a
remarkable improvement of the word recognition performances.

We �rst briey describe the two building blocks of the handwriting recognition system, the
character recognition on one hand and the lexical processor on the other hand.

Then we report experimental results that demonstrate a clear advantage of our method over the
traditional use of the classi�er confusion matrix for substitution cost estimation. We show why

RBF-based classi�ers, having localised receptive �elds, are a major asset in this respect.

3



Figure 1: A few examples of a words written using the spaced-discrete mode

2 Handwriting recognition system

The �rst stage of our handwriting recognition system is a "segmentation" stage which consists in
the identi�cation of a list of candidate characters in a time-dependent signal that we assume to

be a written word. We assume here that the segmentation is almost error free because the writer
is asked to write well spaced characters as in �gure 1.
In terms of applications, this is a realistic assumption because while this mode of writing is not

as fast as the cursive mode it has the big advantage of being reliable. Indeed, the error rate is

very low, providing that the writer follows only one very simple "writing rule": letters must not
overlap. The system has a "trace" mode where the results of the segmentation are displayed so

that the user can see that when the writing rule is not respected it causes segmentation errors
(typically two letters are attached), which in turns results in word recognition errors. From the

user point of view, this is very important: when following the rule, the recognition rate is very

high. Failure occurs only when several letters in the word are very badly shaped. In comparison,
cursive handwriting recognition systems are crippled by catastrophic performance degradations

for reasons that are most often absolutely impossible to �gure for the user because all the causes of
error are mixed. Consequently such systems are rejected as being not reliable. In fact the problem

is that even a cooperative user cannot �nd out what to do in order to be absolutely certain to

have his (her) handwriting recognized.
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The rationale of using the discrete mode is thus that with a minimal e�ort from the user we

can use handwriting recognition for text entry with a very high word recognition rate in real time

using a microcomputer or Personal Digital Assistant (PDA).

Consequently, we can restrict ourselves to the study of lexical assistance with only substitutions.

2.1 Character recognition

The character recognition used here has been described elsewhere [4]. It is based on building a

feature vector from the pen signals i.e. pen tip position and contact with the writing surface as

a function of time using classical normalisation (size, translation, re-sampling) and feeding this

feature vector to a Constructive Tree Radial-Basis-Function (CTRBF) classi�er that will be briey

described. This classi�er produces not only a class but a list of all possible classes ordered by

decreasing likelihood estimation which is fundamental for the e�cient subsequent processing as

we will show.

2.2 CTRBF

The CTRBF algorithm is based on a Radial Basis Function Network, and has the basic properties
of RBF. However, a CTRBF network is much faster than a classical RBF network, for evaluation
as well as for training, with no degradation of the performances [5].
Radial-Basis-Function Networks are known to be capable of universal approximation [6] [7] and

the output of a RBF network can be related to Bayesian properties.
A RBF net has 2 layers. The hidden layer is fully connected to the input units X = (Xi)

of size Ninput. A hidden unit j has an input vector of synaptic weights Winj = (Win
j
i ) and

is evaluated using a metric, for example in the following formula the Euclidean metric, and a
nonlinear function f(x) such as exp(-x) or 1/(x+a). �j is an adjustable parameter. As this process

has a radial symmetry of center Winj, the output of a hidden unit j will increase when the input
pattern vector X comes "closer" (according to the metric) to the synaptic weights vector Winj:

OUTj = f(jjWinj �Xjj) = f(
Ninput�1X

i=0

(Xi �Winji )
2=�j)

The next layer gathers the activities of the hidden units with the purpose of taking a decision
on the class of the input prototype. For classi�cation tasks with C classes, this output layer will
have C output units. The classi�cation result is obtained from this layer on a "winner-take-all"

(WTA) basis: the class of the input pattern will be given by the most active output unit. Then
the second most active unit gives the best alternative etc...
Note that the synaptic vector Winj stores a location in the problem space, in other words, it

stores an input pattern. The important properties of RBF networks derive from this fact. For

example RBF networks provide intrinsically a very reliable rejection of "completely unknown"
patterns, because these patterns being "far away" produce weak activities.

2.3 Lexical processor

The lexical resource we use is based on a modi�ed Levenshtein [1] distance computation: for a

given candidate word we search the closest word in the dictionary using a Levenshtein distance. It
is a classical dynamic programming scheme: the distance between two words can be computed by

�nding the "cheapest" sequence of edition operations (substitution, deletion, insertion) that can

be used to transform one word into the other. "Cheapest" means here the smallest cost where the
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cost of a sequence of edition operations can be computed as the sum of the costs of each edition

operation divided by the number of operations [8].

Here we restrict ourselves to substitution (we assume a perfect segmentation, or rather we

extracted the segmentation errors in order to study only the substitution cost estimation). In the

most simple case the costs of the edition operations are empirical constants. We will show that

while this provides extremely cheap implementation (especially for hardware implementation) the

gain in word recognition rate due to the lexical processing is not very big. In fact, important

improvements can be obtained by using costs that are adapted to each word comparison.

In [9] the experimental results are reported on garbled words produced using a random generator,

with a 1000 word dictionary. But classi�cation errors are not random. It is important to stress

that the key improvements are obtained when the substitution errors are correctly modeled, i.e.

we want to have the best possible alternative list for each character recognized.

The rationale is that for example the substitution cost of "B" with "R" should be lower than

the substitution cost of "B" with "I", because the patterns "B" and "R" are more di�cult to tell

apart.

A
U

D

A

Figure 2: We assume that we can represent each pattern used for character classi�cation as a two-

dimensional vector (or �nd a projection of a high dimension vector on 2 directions ). In the case

of handwriting recognition, the data is multi-modal (a character may have di�erent shapes) and

highly ambiguous (the same shape may be interpreted as several characters). Thus it is important

not to rely on a class-based statistical error accounting for the estimation of substitution costs but

on a pattern-based method. Here, a "A" may be confused with a "D" or with a "U" but not both

at the same time.

2.3.1 Estimating substitution costs using the confusion matrix

One approach consists in building the substitution costs table from the confusion matrix of the
character recognizer: knowing that the classi�er is not perfect we can record its errors in order

to predict alternatives. For example, when the input pattern is a "R", if the recognizer makes an

error, the probability that the erroneous answer is "B" is bigger than "I". This is done by building
the classi�er confusion matrix. After training the classi�er on the �rst part P1 of the data, it is

tested on P2 in order to build the confusion matrix. The confusion matrix is of size NxN if N is the

number of classes. In this work N = 26 because we assume that upper-case lower-case ambiguities
have to be processed at a di�erent level -application or syntactico-semantic levels- this matrix is
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Figure 3: CTRBF recognizer confusion matrix: the �rst letter designates the class, the following

�gure is the total error number for that class, then for each error we have the error count. The

total error record of our classi�er for 51079 mixed upper-case and lower-case test characters is

thus of 2384 errors ( 4.7%) distributed as shown.

plotted is table 3. Note that for example the high confusion rate between E and L or A and D
are due to the lower-case confusions. This matrix can be seen as giving for each possible class the

probability that the result is true. Typically the diagonal of this matrix should be made of terms

very close to 1, all other terms should be very small (a perfect classi�er confusion matrix is the
identity matrix). However in handwriting recognition we have a very di�cult pattern recognition
problem especially in terms of confusions: the same shape can be used to represent di�erent

characters (see for example �gure 2) so that for almost all classes there are several ambiguities.

Note that these ambiguities are not only due to classi�er imperfections, most are intrinsic.
Using the confusion matrix has the following drawbacks:

� Some patterns that are not ambiguous at all will be processed as ambiguous. In our exam-
ple a perfectly shaped "B" will be interpreted in the lexical process as having a non-zero

probability of being a "R" which introduces an arti�cial ambiguity.

� Some patterns that are very ambiguous (a character that resembles both a "B" and a "R")

will be processed as only slightly ambiguous, because the error rate is an average rate.

� The part P2 of the data base (typically P1 and P2 have the same size) is devoted to the

constitution of the confusion matrix. It is almost paradoxical that this data, instead of
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being used for a better training of the classi�er, is used for recording the errors since we

have to suspect that the data base (in our case approximately 102000 characters) is barely

big enough. This is especially true for a single-pass constructive algorithm like CTRBF

where, contrary to Error Back Propagation and other iterative methods, we do not have to

reserve test data (P2) for the determination of when to stop the training.

We demonstrate here that more accurate and useful information can be extracted from the

character recognition process providing that the classi�er uses local information like RBF-based

classi�ers do.

2.3.2 Estimating substitution costs using the recognition likelihood

The CTRBF classi�er provides an ordered list of classes according to the "activities" of the

output neurons of the CTRBF network. These activities are non-normalized class probabilities

estimate, i.e. only the relative values are useful because the RBF hidden unit density is not a

quantitative estimation of the pattern density (due to the fact that the error function during

training is not computed using a class probability density estimation but only a symbolic error

on classi�cation performance). Providing a class probability estimate would be better but would

require a Bayesian classi�er that would be more expensive to implement. Instead we compute
a per-character substitution cost based on the RBF "activity" normalized using the winner (top
choice) activity and the simple formula:

cost(i) = a(w)=a(i)� 1

where i is the class number (0-25 for characters), a(w) is the RBF winner activity and a(i) is the
RBF activity for class i. Note that, as the RBF works with localized perceptive �elds, a(i) is a
local estimation: it is a per-pattern view instead of a per-class view as with the confusion matrix.

3 Experimental results

The results reported here are based on a data set of 18331 "discrete" words written by 37 writers
and containing approximately 92000 characters (the average word length is 5). We assume that

the segmentation system is "perfect", i.e. segmentation errors are not accounted.
The CTRBF classi�er used has a maximum recognition rate of 95.3 % (zero rejection) and treats

upper-case and lower-case forms as a single class (thus we have 26 classes).
There was 47891 English words in the reference dictionary based on the "ispell" public domain

dictionary. Of course all words of the data are in the dictionary.

Typical average recognition speed was approximately 13 words per second on a Sun Sparc 10
workstation, including segmentation, character recognition and lexical processing.

3.1 Substitution cost estimation

The strategy used for computing the substitution costs is based on the idea that the RBF classi�er

provides a winner class (best result) and an ordered list of alternatives. We can either process

this full list or only use the top of this list. Using only the top of the list may be an important

alternative for better speed and implementation cost (software as well as hardware). We will
also show that experimentally only the top of the list is useful anyway, which could be suspected

considering the number of classes (26 here). When using only the top of the list, we de�ne the

"marginal cost" as being the substitution cost for classes (characters) that are "out-lier" i.e not
in the top of the list. As will be seen in the experimental results what is important is to specify if
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(0)

candidates

method arbitrary
exact match

best

+ third best

+ second best

all

85.2 / 89.4

75.2 / 77.3

80.6 / 94.1

92.2 / 97.2

(0)

computed costs

81.0 / 94.46

92.3 / 97.3

statistical costs

94.2 / 97.4 94.4 / 97.4

80.6 / 94.1

- / 97.3 - / 94.7

increasing costs

(0,1)

(0,1,3)(0,0,0)

(0,0)

(0)

Cost = (winner)/(RBF act.) -1 

Figure 4: For each variant two di�erent marginal costs are tested, results are separated by a slash:

on the left, in�nite marginal cost, of the right non-in�nite marginal coast (typically: 10). Between

parenthesis �gures are the actual top alternatives substitution costs, when relevant

this cost is in�nite or not. An in�nite substitution cost means that the whole word will be refused
because the distance to this word is in�nite. In�nite costs are useful in order to speed up the
search because as soon as an in�nite cost arises the current reference word is abandoned and the
next reference word is tried. This is conceptually equivalent to using a tree structure [10] where
one starts at the beginning of the word and at each character a choice is made, if the character

does not match the word is refused without having to go deeper in the tree: this is equivalent to
our in�nite cost. It has the advantage of being faster but if an error is made in the beginning it
will not be recovered.
A non-in�nite marginal cost means that no word will be eliminated because it has one letter that

has not been matched well. This allows to recognize words with one or even several characters

that are completely wrong, very badly shaped or not recognized at all.

3.2 Exact match

For comparison purpose we provide the results using an exact match strategy: By exact match
we mean that the distance used is a Hamming distance: when computing the distance between

two words if two letters are the same we add nothing, otherwise we add 1. This is implemented
by making a test or using a OR, which is extremely fast and economical for a hardware imple-

mentation. However, this strategy leads to 80.6 % word recognition rate which is barely better

than the average statistical rate of 78.6 % (computed from the character recognition rate).
If one tries to improve this by providing the second (and eventually) third alternative given by

the classi�er one can see in the table 4 that the performance increases a little (85.2 %)and then
actually decreases (75.2 %) if the third possibility is also taken into account. It means that the

top 3 choices with equal likelihood are not discriminating enough in such a large dictionary.

The most interesting result is that the best result (94.1 %) is obtained with a non-in�nite
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marginal cost but using only the classi�er top choice (all other characters are "equally possible").

This clearly indicates that providing a list of alternatives without ranking them is a bad strategy:

it adds confusion. This is especially clear when the top 3 choices are considered, indeed then the

performance goes below the statistical rate !

3.3 Arbitrary increasing costs

When considering the top N choices given by the CTRBF classi�er for each character, instead of

giving a zero substitution cost for all N top choices as before we give arbitrary increasing costs

(typically, 0 for the best, 1 for the second best, 2 for the third best, etc...). While being slightly

more complicated than a Hamming distance, this is still easy and cheap to implement in VLSI

[11], this is a important point as the performance is equivalent to computed costs (see below) for

which the VLSI implementation is much more complex.

Two important remarks can be made: �rst the performance improves when considering an

increasing number of alternatives, second, using a non-in�nite marginal cost is also a better

alternative.

3.4 Computed costs

The substitution costs are computed using the formula given above, note that alternatives that
have a zero activity produce in�nite substitution costs and that the winner has a zero substitution
cost. In the case of a very ambiguous pattern the second best answer will have an activity very close
to the winner and will thus produce a very small substitution cost, which is an exact translation
of the idea that ambiguous patterns should be seen by the lexical processor as a list of almost

equivalent alternatives.
One can see in table 4 that computing all costs is equivalent to computing the substitution

costs for the top 3 choices only using a non-in�nite marginal cost for all the others. This may be
an indication that the CTRBF classi�er gives a good list of alternatives only down to the top 3
alternatives, beyond that the class probability estimation is probably drowned in noise. However,

it may also due to the dictionary size and the subsequent high word density.

3.5 Statistically estimated costs

Results based on this statistical error estimation for computing the substitution cost are presented
in table 4 in the right hand column. Considering that this close to 100 % each percent of improve-

ment is very hard to get, this is very inferior to a local estimation of the substitution cost (94.7

% versus 97.4 %).

The reason for that is best explained considering �gure 2. In the case depicted in �gure 2 a
statistical substitution cost estimation will give "U" and "D" as possible alternatives for "A"

because both ambiguities occur (when processing a large set of characters). On the other hand
both ambiguities cannot occur for the same pattern of a "A": a pattern may be confused with

"U" or "D". In other words, the class ("A" in this example) is not a rich enough information for
the best estimation of possible alternatives, the localisation of the pattern itself has to be used

and for this purpose a RBF-based classi�er is a major asset.

4 Conclusion

In handwriting recognition of words that are assumed to belong to a given lexicon, the lexical

processor performance is enhanced by providing relevant alternatives for each character in the
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candidate word. By relevant, we want to stress the di�erence between this approach and the

classical statistical processing of the confusion matrix where the alternatives for each character

are estimated on a per-class basis from the class error probabilities of the classi�er. Here we

provide to the lexical processor the correct possible alternatives for each character in the recognized

word, thanks to the use of a RBF classi�er which has localised receptive �elds and thus provides

per-pattern alternatives. Our experimental results demonstrate a major improvement in system

performance, from 94.7 % to 97.4 %. We conjecture that this is due to the highly multi-modal

and ambiguous nature of handwriting.
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