
MedusaMedusa
An Architecture for Distributed MultimediaAn Architecture for Distributed Multimedia

http://www.orl.co.uk/

Frank Stajano

fstajano@orl.co.uk

22

What is Medusa?What is Medusa?

 Medusa is a hardware and
software architecture for

distributed multimedia.

The scenario is one in which
various devices, connected to a
network, exchange streams of

continuous media.

33

First-generation networked multimediaFirst-generation networked multimedia

 The traditional approach to this
problem has been to deploy

computers on the network and to
attach multimedia peripherals to

them.

44

Attaching multimedia peripherals to computersAttaching multimedia peripherals to computers

 When a computer is equipped
with a camera, the video grabber
card which digitises the camera’s

analogue signal is plugged into
the bus of the computer.

 The microphone and speaker are
traditionally dealt with in the

same way: transducers are
attached to an audio card which

plugs into the computer’s bus.

55

 What happens when you establish
an audio connection between two

workstations?
 The audio signal from the

microphone is digitised by the
audio card and routed through

the bus to the network adapter of
the first computer. Then it travels
through the network, reaches the

network card of the second
computer, gets onto the bus and

is picked up by the audio card,
where it is transformed back to

analogue format and sent to the
speakers.

 A video stream follows a similar

route: from transducer to
digitiser to bus to network to bus

to display.

A convoluted path for multimedia streamsA convoluted path for multimedia streams

66

A strategy lacking scalabilityA strategy lacking scalability

 If we wanted to equip our
workstation not with one but with
four, eight or sixteen cameras, we

would see that this system does
not scale very well.

 For a start, we would run out of
slots to put video grabbers in.
 Secondly, assuming we had

enough slots, we would run out of
bandwidth on the computer’s bus.

 Even in a lightly loaded case with

only one camera and one
microphone, we may find the

continuous media streams on the
computer bus are a cause and a

target of interference with the
rest of the applications running

on the machine.

??

77

Medusa’s “network endpoints” philosophyMedusa’s “network endpoints” philosophy

 In Medusa we solve this problem
with a new approach: the

multimedia transducers such as
cameras, microphones and

speakers are no longer
peripherals of the computer.

 They become computers in their
own right, with their own

processor and network interface.
We call them network endpoints.
They no longer plug into the bus

of a computer: instead, they
connect to the network directly.

88

A simpler pathA simpler path

 The path followed by the audio
goes directly from a microphone

on the source audio endpoint, via
the network, to the speaker of the

sink audio endpoint, without
having to enter a conventional
computer; so the audio doesn’t

slow down the applications and is
not interrupted by them.

99

A more uniform software APIA more uniform software API

 As an added advantage, local and
remote peripherals all look alike
to the software that drives them.

 In contrast to the previous case,

where the local peripheral had a
privileged status and needed to be

treated differently, everything
here is on the network and is
accessed in the same uniform

way.

the
old
way

the
medusa
way

1010

A flexible, scalable architectureA flexible, scalable architecture

 This architecture can be scaled
very efficiently and flexibly.

 A computer can have one camera,

or four, or ten with the same
ease. This is because these

cameras are not peripherals of
the computer, but just other
stand-alone computers that

happen to be located nearby.

 You can also imagine locations
where you have cameras without

any computers at all, for example
a smart doorbell.

1111

Medusa software: a distributed, modular approachMedusa software: a distributed, modular approach

 The software side of Medusa is
based on software objects called

modules.

 Modules are the active objects
that work as sources, processors

and sinks of multimedia data, and
everything of interest happens

inside a module.

 A video source module is a
software object that produces
frames of video. A video sink

object accepts frames of video
and it may display them on a

screen. Between them, data flows
on a demand-driven connection.

software

hardware

1212

Replumbing modules with parts from a libraryReplumbing modules with parts from a library

 You can insert another module
between these two, for example
one that changes the brightness

and contrast.

 Other available modules detect
the average brightness of the

scene; split the video stream and
send it to several sinks in parallel;
switch the video stream and only

send it to one output at a time;
add subtitles; or track moving

objects in the scene.

1313

Complex networks of modulesComplex networks of modules

 Of course you can combine these
in a web of modules to build

complex applications.

 A typical Medusa application, like
a multi-stream video phone,

contains about a hundred
modules.

 This is because there are many
parallel video pipelines, including

ones to scene analysers which can
automatically cross-fade to the

active camera.

camera
sources

icon
windowsdemulti-

plexers

scene
analysers

decision
agent

channel
switcher
and cross-
fader

main
window

1414

An entirely distributed approachAn entirely distributed approach

 From the application’s point of
view it doesn’t really matter
where the modules are: the

important thing is only what they
do and the way in which they are

interconnected.

machines

processes

modules

connections

1515

Network-transparency of module connectionsNetwork-transparency of module connections

 You can have a simple test
program where a test source

generates frames and sends them
to a display module.

 Both modules could live inside the
same process on the same

machine.
 But it is also possible for the test

source to be running inside a
different process from the display
module, though they would still be

connected with a Medusa
connection.

 This connection would look
exactly like the previous one to

the application using the modules,
but its implementation would be

different and would involve inter-
process communication.

test source display

test source display

1616

Connections spanning the networkConnections spanning the network

 The source could be even running
on a different machine on the

network: in fact, the real camera
module runs on the camera

endpoint.

 However, at the application level,
the connection to the display

module looks exactly the same.

test source

display

1717

An easier approach to distributed multimediaAn easier approach to distributed multimedia

 The Medusa architecture makes
distributed programming easy

because modules are instantiated
and connected to each other in

exactly the same way,
independent of whether jumps

across the network are involved
or not.

decision
agent

channel
switcher
and cross-
fader

icon
windows

scene
analysers

main
window

camera
sources

demulti-
plexers

